

# Status and first results from the High Power Laser Facility at the ESRF

**J.-A. Hernandez**<sup>1</sup>, <u>N. Sevelin-Radiguet</u><sup>1</sup>, <u>R. Torchio</u><sup>1</sup>, S. Balugani<sup>1</sup>, G. Berruyer<sup>1</sup>, S. Chazalette<sup>1</sup>, C. Clavel<sup>1</sup>, D. Bugnazet<sup>1</sup>, D. Lorphèvre<sup>1</sup>, F. Perrin<sup>1</sup>, S. Pasternak<sup>1</sup>, F.Villar<sup>1</sup>, O. Mathon<sup>1</sup>

<sup>1</sup>European Synchrotron Radiation Facility, Grenoble, France *jean-alexis.hernandez@esrf.fr* 





### HPLF on ID24-ED

 $\rightarrow$  A platform for laser-driven dynamic compression experiments coupled to time-resolved XAS



ID24-ED: energy-dispersive branch Fast measurements down to single-bunch XAS



### X-ray absorption spectroscopy

- $\rightarrow$  X-ray Absorption Spectroscopy
- Absorption edge energies specific to each elements





- Absorption of X-ray photon by a core-level electron by photo-electric effect
- Transition of the photo-electron from core-levels to unoccupied states



 $\rightarrow$  X-ray Absorption Fine Structure (XAFS)

Ex. of Fe *K*-edge spectrum



#### **XANES**: X-ray Absorption Near-Edge Structure

- Core to quasi-bounded state transitions
- Coordination chemistry, oxidation state, ...
- Molecular orbitals (p-d hybridization, CFT, ...)
- Band structure
- Multiple-scattering
- Sensitive to the electronic structure



 $\rightarrow$  X-ray Absorption Fine Structure (XAFS)

#### Ex. of Fe K-edge spectrum



#### **XANES**: X-ray Absorption Near-Edge Structure

- Core to quasi-bounded state transitions
- Coordination chemistry, oxidation state, ...
- Molecular orbitals (p-d hybridization, CFT, ...)
- Band structure
- Multiple-scattering
- Sensitive to the electronic structure

#### **EXAFS**: Extended X-ray Absorption Fine Structure

- Core to continuum
- Interferences between forward and backward scattering to and from neighboring atoms
- Sensitive to local ionic structure (distances, number of atoms, disorder)

 $\rightarrow$  XAS is element specific, local, and adapted to both ordered and disordered phases

 $\rightarrow$  Complementary to XRD (long-range order) and other X-ray techniques



The European Synchrotron

→ HPLF is one of the 5 high-power lasers coupled to large X-ray facilities (3 on XFELs, 2 on synchrotrons)





→ HPLF is one of the 5 high-power lasers coupled to large X-ray facilities (3 on XFELs, 2 on synchrotrons)



 $\rightarrow$  HPLF is the only one dedicated to high-resolution XAS



2021

# Installation of clean room, drive laser, and beam transport structure First laser + X-ray shot

Temporary shock diagnostic setup (1 line-VISAR and loaned probe laser)







2021

#### Installation of clean room, drive laser, and beam transport structure First laser + X-ray shot Temporary shock diagnostic setup (1 line-VISAR and loaned probe laser)



#### **Beginning of user and in-house experiments (x6)**

Drive laser at 45 J with 10 and 5 ns flat-top pulses Temporary shock diagnostic setup (2 line-VISAR and loaned probe laser)



| 2021 | Installation of clean room, drive laser, and beam transport structure<br>First laser + X-ray shot<br>Temporary shock diagnostic setup (1 line-VISAR and loaned probe laser)                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2022 | <b>Beginning of user and in-house experiments (x6)</b><br>Drive laser at 45 J with 10 and 5 ns flat-top pulses<br>Temporary shock diagnostic setup (2 line-VISAR and loaned probe laser)                                |
| 2023 | User and in-house experiments (x7)<br>Installation of new shock diagnostics (2 line-VISAR + custom probe laser)<br>Analysis and simulations tools for hydrodynamics<br>Drive laser at 55 J with 4-15 ns flat-top pulses |



| 2021 | Installation of clean room, drive laser, and beam transport structure<br>First laser + X-ray shot<br>Temporary shock diagnostic setup (1 line-VISAR and loaned probe laser)                                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2022 | <b>Beginning of user and in-house experiments (x6)</b><br>Drive laser at 45 J with 10 and 5 ns flat-top pulses<br>Temporary shock diagnostic setup (2 line-VISAR and loaned probe laser)                                |
| 2023 | User and in-house experiments (x7)<br>Installation of new shock diagnostics (2 line-VISAR + custom probe laser)<br>Analysis and simulations tools for hydrodynamics<br>Drive laser at 55 J with 4-15 ns flat-top pulses |
| 2024 | User and in-house experiments<br>Installation of SOP<br>Design of optional 3 <sup>rd</sup> line-VISAR (orthogonal FOV)<br>3rd steak camera received onsite                                                              |



#### $\rightarrow$ Experimental geometry





### Single bunch XAFS on ID24-ED

#### Polychromator

Bent Si(111, 220, 311) crystal with elliptical shape



#### XAS on ID24-ED (HPLF-I)

| Pulse duration          | 100 ps (up to 10 <sup>14</sup> ph/s)                                                            |
|-------------------------|-------------------------------------------------------------------------------------------------|
| Energy                  | 5 - 28 keV<br>K-edges between V (Z=23) and Cd (Z=48)<br>L3-edges between Cs (Z=55) and U (Z=92) |
| XAS energy range        | 150 eV - 2500 eV (E-dpt)                                                                        |
| Focusing                | Hor. 5-50 µm (E-dpt) Vert. 5-50 µm                                                              |
| Detector                | XH, Ge strip Science & Technology<br>Facilities Council MIRION                                  |
| Integration time        | ≥ 100 ns                                                                                        |
| Readout time / rep.rate | 2 µs / 2.8 µs                                                                                   |
| Timing modes            | 4-bunch 16-bunch 7/8+1 <sup>700</sup> ns <sup>2.8</sup> μs <sup>2.8</sup> μs                    |

Borri M. *et al.*, NIMPR-A, 988 (2021)

Sévelin-Radiguet, N., Torchio R. et al. JSR 29 (2022)



# Single-bunch XAS of Fe K-edge in $(Mg,Fe)CO_3$ with 0.7 eV experimental resolution



#### XAS on ID24-ED (HPLF-I) **Pulse duration** 100 ps (up to 10<sup>14</sup> ph/s) 5 - 28 keV Energy K-edges between V (Z=23) and Cd (Z=48) L3-edges between Cs (Z=55) and U (Z=92) **XAS** energy range 150 eV - 2500 eV (E-dpt) Focusing Hor. 5-50 µm (E-dpt) Vert. 5-50 µm XH, Ge strip Detector Science & Technology Facilities Council MIRION Integration time ≥ 100 ns Readout time / rep.rate 2 µs / 2.8 µs **Timing modes** 4-bunch 16-bunch 7/8+1 700 ns 76 ns 2.8 μs 2.8 <u>µs</u> 2.8 µs

Borri M. et al., NIMPR-A, 988 (2021)

Sévelin-Radiguet, N., Torchio R. et al. JSR 29 (2022)



# HPLF drive laser

| Drive laser          | Premiumlite – Glass prototype from Amplitude                                 |
|----------------------|------------------------------------------------------------------------------|
| Wavelength           | 1053 nm                                                                      |
| Energy               | 1-55 J on target                                                             |
| Pulse temporal shape | <b>Flat-top, tunable on request</b> , 0.25 ns rise and 0.125 ns control step |
| Pulse duration       | 4-15 ns on request                                                           |
| Phase plates         | 500, 250, 100 μm, SSD                                                        |
| Rep. rate            | 1 shot / 7-20 min<br>(limited by target alignment and sequence<br>duration)  |



The European Synchrotron

#### Pulse shaping capabilities to generate different P-T



Duffy and Smith, Front. Earth Sci. (2019)

#### On-shot monitoring at different positions along laser path NF in EH1



# HPLF drive laser

#### $\rightarrow$ Premiumlite – Glass prototype from Amplitude



- Fibered front-end (ModBox) with pulseshaping (CW, AOM, 2 EOM with AWG)
- Spectral Broadening Unit for 1D-SSD
- Intrepid front-end
  - free-space regenerative cavity with flashpumped rod amplifiers (Nd:glass)
  - 5 mm diam. rod amplifiers + spatial shaping
  - SSD
  - 25 mm diam. rod amplifiers
- Main amplifier
  - Pseudo-Active Mirror Disk Amplifier Modules
  - Two attenuators (λ/2 + pol.)



### $\rightarrow$ See talk of O. Zabiolle (Amplitude) at 17:20



### Line-imaging VISAR (x2)

- Time-resolved velocity measurements
- Pressure determination
- Reflectivity measurement





### Line-imaging VISAR (x2)

- Time-resolved velocity measurements
- Pressure determination
- Reflectivity measurement



Line widths:  $6.96 \ \mu m$ ,  $3.48 \ \mu m$ 



Page 18 DyCoMax 2024 I European Synchrotron Radiation Facility I Jean-Alexis Hernandez

Space (µm)

#### Line-imaging VISAR: Different cases



The European Synchrotron

# Support for analysis and hydrodynamic simulations

#### $\rightarrow$ Development of tool to analyse VISAR images and determine pressure





The European Synchrotron

- → Hydrodynamic simulations with MULTI and ESTHER codes
  - Experiment preparation, target design
  - Analysis of shock hydrodynamics

→ Ablation pressure measurements in Black Kapton (max. 140 GPa)



Consistent results with different targets (BK/LiF, BK/SiO<sub>2</sub> glass, BK/metal, BK alone)





### Some science cases investigated in the last two years

#### **Fundamental physics**

**Material sciences** 

Warm Dense Matter, Phase diagrams (Fe, Cu, Co) S. Balugani et al. (ESRF, FLF, LULI, Oxford Uni.)

Shock induced metallization of GeO<sub>2</sub> A. Benuzzi et al. (LULI, CELIA, ESRF)

Shock of pre-compressed water in DAC A. Dwivedi et al. (EuXFEL, Milano Univ., ESRF, LULI, LLNL)

**Ni, phase transitions** A. Sollier, C. Pépin et al. (CEA)

**Bulk and Nanopourous Cu** A. Krygier, J. Eggert, et al. (LLNL)

CuZr based Metallic glasses D. Loison (Uni. Rennes1, Warsaw Uni., LULI)

> Phase transitions Local ionic structure

> > T from EXAFS

**Electronic structure** 

**Planetary sciences** 

**Fe-oxides** 

J. Pintor, M. Harmand et al. (IMPMC U. Rochester, EuXFEL, LULI, PIMM)

Fe-bearing silicate melts

JA Hernandez et al. (ESRF, IMPMC, LULI, Arizona Univ., Stanford Univ.)

**Fe-alloys** 

G. Morard, J.-A. Hernandez, G. Garofalo et al. (ESRF, IMPMC, LULI, Arizona Univ., Stanford Univ.)

Reactivity of Fe and H

D. Kraus, C. McGuire et al. (Rostock Uni., HZDR, LULI, Stanford Uni., LLNL)

#### Fe-bearing carbonate

A. Diwedi et al. (EuXFEL, ENSTA, IMPMC, MNHM, PIMM, ESRF)



# Investigation of 3d-metals structure and electronic properties

Iron

#### Copper

Focus on temperature determination from EXAFS in fcc phase

A. Krygier, J. Eggert, C. McGuire, C. Vennari, P. Hesselbach et al.

![](_page_22_Figure_4.jpeg)

### → See talk of A. Krygier (LLNL) on Wednesday at 8:30

![](_page_22_Figure_6.jpeg)

Focus on phase transitions and liquid in the warm dense state

S. Balugani, R. Torchio, et al.

![](_page_22_Figure_9.jpeg)

ESRF

The European Synchrotron

Balugani et al., in prep.

 $\rightarrow$  See talk of S. Balugani (ESRF) on Wednesday at 9:00

# Structural transitions and metallization of glassy GeO<sub>2</sub>

#### GeO<sub>2</sub> as analogue of SiO<sub>2</sub>, key constituent of Earth and planets

A. Benuzzi-Mounaix, R. Torchio et al.

![](_page_23_Figure_3.jpeg)

#### Densification to 6-fold rutile structure (P < 100 GPa)

Metallization and band gap closure (P > 100 GPa)

![](_page_23_Figure_6.jpeg)

#### Page 24 $\rightarrow$ See talk of A. Benuzzi (LULI) on Thrusday at 11:10

#### EOS and XRD done at LULI

![](_page_23_Picture_9.jpeg)

XRD @ LULI, Denoeud, Hernandez *et al*. RSI, 2021

![](_page_23_Figure_11.jpeg)

## Exploring denser states by coupling static and dynamic compressions

#### Laser-shock in DAC pre-compressed samples, adaptation for 100J-class lasers

A. Diwendi, V. Cerantola, J.-A. Hernandez, A. Ravasio, E. Brambrink, M. Millot, et al.

Pre-compression in DAC increases pre-shock density and allows to produce shock states with higher ρ and lower T (so far reserved to large laser facilities)

Adaptation to 100J-class lasers coupled with X-ray facilities using perforated diamond anvils?

![](_page_24_Picture_5.jpeg)

Shock in ice VII pre-compressed at 5 GPa on HPLF Pressure was about 40 GPa in  $H_2O$ 

 $\rightarrow$  See poster of A. Dwivedi (EuXFEL)

![](_page_24_Figure_7.jpeg)

![](_page_24_Picture_8.jpeg)

### **Fe-bearing planetary compounds**

### Siderite (Mg,Fe)CO<sub>3</sub>

Page 2

A. Diwendi, V. Cerantola, F. Guyot, M. Harmand, T. de Resseguier et al.

Transformation mechanisms upon impact? Fate of carbonates at lower mantle conditions?

![](_page_25_Figure_4.jpeg)

### → See talk of A. Dwivedi (EuXFEL) on Wednesday at 11:50

### Hematite Fe<sub>2</sub>O<sub>3</sub>

J. Pintor, A. Amouretti, K. Appel, K. Buakor, M. Harmand et al.

Effect of strain rate and kinetics in  $Fe_2O_3$  HP Interplay between electronic and ionic structures?

![](_page_25_Figure_9.jpeg)

→ See talk of J. Pintor (IMPMC) on Wednesday at 12:10

![](_page_25_Picture_11.jpeg)

### **Fe-bearing planetary compounds**

#### Investigation of dense Fe-bearing silicate melts: example of Almandine garnet (Mg,Fe)<sub>3</sub>Al<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>

J.-A. Hernandez, L. Lebon, G. Morard, S. Pandolfi, A. Ravasio, S. H. Shim, X. Xong, A. Gleason, R. Alonso-Mori, H. J. Lee, W. Mao, C. Prescher, N. Sevelin-Radiguet, R. Torchio

Thermodynamics, structural and electronic properties of Fe-bearing dense silicate melts Implications for deep magma oceans of terrestrial planets (composition, lifetime, conductivity)

Local structure around Fe atoms and electronic transitions from XAS

![](_page_26_Figure_5.jpeg)

#### Phase transitions and liquid structure from XRD

![](_page_26_Figure_7.jpeg)

# HS-LS transition evidenced by Kβ XES

![](_page_26_Figure_9.jpeg)

+ EOS at LULI

The European Synchrotron

### Summary and next steps

#### ✓ HPLF has been welcoming users since June 2022!

#### ✓ Experimental configuration

- Drive laser providing 55 J in 4-15 ns at 1053 nm
- Up to 140 GPa ablation pressure in black kapton
- High-resolution XAS for edges between 5 and 28 keV
- 2 line-imaging VISAR
- Support for analysis and experiment preparation

#### ✓ Good first science results

- · First manuscripts expected to be submitted in the coming weeks/months
- Most studies are at the stage of performing comparative atomistic simulations
- Streaked Optical Pyrometer to be installed by mid-2024

→ HPLF-II: HPLF laser upgrade and coupling with other X-ray diag. (XRD, XRI, …)

![](_page_27_Picture_15.jpeg)

![](_page_27_Picture_16.jpeg)

![](_page_27_Picture_17.jpeg)

ightarrow See round table session

# Applying for beamtime on the High-Power Laser Facility on ID24-ED

#### **Pratical information**

#### Register to hplf@esrf.fr

(facility parameters, proposal deadlines, target testing sessions)

Proposal submission2 calls per year (September and March)Beamtime 1 year after acceptation

- Help provided for experiment design if needed
- ~100-150 samples needed per beamtime
- Samples should be tested in advance

![](_page_28_Picture_8.jpeg)

#### **Contacts:**

R. Torchio, <u>raffaella.torchio@esrf.fr</u> (Scientist in charge of ID24-ED and HPLF)

J.-A. Hernandez, jean-alexis.hernandez@esrf.fr (Scientist responsible of dynamic compression experiments)

![](_page_28_Picture_12.jpeg)

### Acknowledgments

- $\rightarrow$  ESRF, partners and staff for supporting this facility
- $\rightarrow$  All people who provided help and advices from different institutes

![](_page_29_Picture_3.jpeg)

→ Users for their interest, feedback and for making leading science at ESRF!

![](_page_29_Picture_5.jpeg)

![](_page_29_Picture_6.jpeg)

![](_page_29_Picture_7.jpeg)

Amplitude

# Thank you for your attention

### Interaction chamber and target holder

![](_page_31_Picture_1.jpeg)

### Upstream µscope image

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

Downstream visar image

![](_page_31_Picture_6.jpeg)

![](_page_32_Figure_1.jpeg)

Line widths:  $6.96 \mu m$ ,  $3.48 \mu m$  Max. fov = 400 um usable

Min. fov = 200 um usable The European Synchrotron | ESRF